LASED
Release 0.3

Manish

May 18, 2022

CONTENTS:

1 Getting Started
1.1 Getting Started L e e e e e e e e e e e e
2 Tutorials
2.1 Tutorial I: The Basics with Simple Calcium
2.2 Tutorial 2: D to P Exciationin Helium 0oL o oL
2.3 Tutorial 3: He Excitation: Initialisation with Data and Angular Shape
2.4 Tutorial 4: Hyperfine Structure of Sodium D2 Line,
2.5 TTutorial 5: Rubidium-85 D Line L e
2.6 Tutorial 6: Caesium-133 D Line e
3 Detailed API
3.1 Detailed APL L
4 Indices and tables
Python Module Index
Index

73
73

89

91

93

CHAPTER
ONE

GETTING STARTED

1.1 Getting Started

1.1.1 What is LASED?

LASED stands for Laser-Atom interaction Simulator derived from quantum ElectroDynamics. LASED is a python
library which can:

* Calculate the time evolution of an atomic system interacting with a laser.
* Generate the equations of motion of an atom-laser system.

* Rotate an atomic system to a different reference frame.

 Calculate the time evolution of the angular shape of an atomic state.

LASED can simulate any atomic system. The sub-states, angular momenta, spin, and energies of the system are pro-
vided by the user to simulate the atomic system.

Laser parameters also need to be specified to build the laser-atom system. These parameters include detuning from the
transition frequency, polarisation, and laser intensity/power.

LASED can simulate a Gaussian beam profile and Doppler averaging over the atoms to provide a more accurate model
of the atom-laser system. LASED can also simulate the angular shape of an atomic state over time as it is excited by a
laser. This is useful in many experiments using atoms and lasers.

1.1.2 Installation

You can easily install LASED by opening up a terminal and running:

pip install LASED

The source code can be viewed here

https://github.com/mvpmanish/LASED

LASED, Release 0.3

1.1.3 Using LASED

Start by going to Tutorials.

The first tutorial is a guide on how to simulate one of the simplest excitations of an atom with a laser and shows how
to use most of the functionality of LASED.

The second tutorial shows how to simulate decays to other states not in the laser-excitation manifold. It also introduces
rotating the system to different reference frames using the Wigner rotation matrix and hence introduces simulating a
polarisation angle.

The third tutorial simulates a metastable Helium atom with some real data on what the initial state looks like and how
to initialise the system to this state.

Each tutorial after this simulates an increasingly more complex atomic system with hyperfine structure.

2 Chapter 1. Getting Started

[17:

CHAPTER
TWO

TUTORIALS

2.1 Tutorial 1: The Basics with Simple Calcium

The system of calcium’s ground state excited to its first excited state with an on-resonance laser is one of the simplest
systems to model as there is only a ground S-state and an excited P-state with no hyperfine structure. We can verify
results already published by Murray 2003 by using the LASED package. In this paper the transition between the ground
S-state and the first excited singlet P-state is modelled with the laser on-resonance and 200 MHz & 500 MHz detuned
from resonance.

First, we’ll set up the states. A diagram of the system we are going to model is seen below. The ground S-state is
represented by one sub-state lebelled as |1) and the excited P-state is represented by three sub-states labelled as |2), |3),
and |4).

The numbers indicate the labelling I have given them. It is convention to label the sub-states in your system by labelling
the lowest in energy state first. The sub-state with the lowest m value is labelled as |1) and then the 2nd lowest m value
as |2) etc. until you run out of sub-states. Then, the next highest in energy state is labelled.

The wavelength of the difference in energy between these two states is also shown as 422.8 nm.

|2 >

3> |4 >

A =422 8 nm

Now, we’ll import the LASED library and a plotting library. I use Plotly to plot all the figures here but any plotting
library can be used.

import LASED as las

from IPython.display import Image

import plotly.graph_objects as go # For plotting

import time # NOT NEEDED: For seeing how quickly the time evolution is calculated
import numpy as np

https://iopscience.iop.org/article/10.1088/0953-4075/36/24/011/meta

[2]:

[3]:

LASED, Release 0.3

2.1.1 Setting up the System

With LASED you can declare atomic sub-states using the State object. These states are used to declare a
LaserAtomSystem which can then be used to calculate the time evolution of the system.

First, we must declare the system’s variables: wavelength of the transition, lifetime of the excited state, isospin, etc.

Note: LASED has a timescale of nanoseconds so all times will be input in nanoseconds. If I want a lifetime of 4.6e-9
s then I have to input 4.6 into my LaserAtomSystem object.

wavelength_ca = 422.8e-9 # wavelength of Ca transition in metres
tau_ca = 4.6 # lifetime in nanoseconds
Ica=0 # Isospin of calcium

Create the State objects by providing the 1abel of the sub-state with the convention as above. The system may not
be modelled correctly if you do not stick to this labelling convention.

Each sub-state must have a relative angular frequency w associated with it. This angular frequency is related to the
energy as usual £ = hw. All frequencies should be in gigaradians per second. The energies are relative so you just
have to set a zero point and then all other sub-states have energies relative to this point. I have set the zero-point as the
energy of the ground sub-state.

Each sub-state must be labelled with its corresponding quantum numbers: orbital angular momentum L, spin S, projec-
tion of total angular momentum m. The isospin I is assumed to be zero if not specified. The total angular momentum
(without isospin) can be specified with keyword J and is calculated as J=L+S if not specified. The total angular mo-
mentum with isospin can be specified with keyword F and if not specifed is calculated as F=J+1I.

To create the ground or excited state you must insert each sub-state in an ordered list starting with the smallest labelled
state to the highest labelled state.

Calculate angular frequency of the transition
w_e = las.angularFreq(wavelength_ca) # Converted to angular frequency in Grad/s

Create states

sl = las.State(label =1, w=0, m=0, L =0, S =0)

s2 = las.State(label = 2, w =w.e, m= -1, L =1, S = 0)
s3 = las.State(label = 3, w=w_e, m=0, L =1, S = 0)
s4 = las.State(label =4, w=w_e, m=1, L =1, S = 0)

print(s3)

Create ground and excited states list
G_ca = [sl1]
E_ca = [s2, s3, s4]

State(label = 3, w = 4455183.460995396, m =0, L =1, J =1, I =0, F=1)

Declare the laser parameters. The intensity of the laser laser_intensity must be in units of mW/mm?2.

The polarisation of the laser is defined by keyword Q and is either right-hand circular (o %) with a +1, left-hand circular
(07) witha-1, and linear (7) polarisation with the polarisation axis defined along the axis with a 0 (angle of polarisation
of zero degrees). Q is defined as a list of any of these three values. If Q is O then it is defined that the linear polarisation
is aligned with the x-axis (if the z-axis is the quantisation axis). This is known as the collision frame in scattering
experiments.

The detuning of the laser away from resonance can be specified as well. If no detuning is given then the laser is
assumed to be on-resonance i.e. detuning = 0

Note on using more than one polarisation: If more than one value is in the list then the laser is defined as having
simulataneous polarisations of the same laser acting upon the atom. This can be possible if working in the natural frame

4 Chapter 2. Tutorials

[4]:

[5]:

[6]:

[77:

LASED, Release 0.3

when the laser is travelling along the direction of the quantisation axis and the polarisation is linear in the collision
frame. When working in this natural frame Q = [-1, 1]. You must normalise the Rabi frequencies if you do this
by a normalisation constant by giving the LaserAtomSystem an attribute called rabi_scaling. In this case of two
simultaneous Rabi frequencies, the correct time evolution would be scaled by 1/np.sqrt(2). If n simultaneous
polarisations are used then it must be scaled by 1/np.sqrt(n). You must also apply the rabi_factors attribute as
the simultaneous combination of LHC and RHC Rabi frequencies is only equal to a linear exciation if the total Rabi
frequency is 1/ \ﬂ2) (271 —QF1) 5o the RHC Rabi frequency must be multiplied by -1. This is achieved by setting the
rabi_factors attribute to rabi_factors = [1, -1] if using a Q as stated above. Each element of Q is multiplied
by the corresponding element in rabi_factors.

intensity_ca = 100 # mi//mm*-2

Q_ca = [0]

detuning = 0.2%2*np.pi # detuning here is 200 MHz in Grad/s
detuning2 = 0.5*2*np.pi # detuning here is 500 MHz in Grad/s

The time over which the simulation run must be sepcified. It must be specified with a list with every discrete time step
(in nanoseconds) in it. Numpy’s linspace is handy for this task.

Simulation parameters

start_time = 0

stop_time = 50 # in ns

time_steps = 501

time_ca = np.linspace(start_time, stop_time, time_steps)

Create a LaserAtomSystem object by using the variables stated above. Three system’s are created here for different
detunings.

calcium_system = las.LaserAtomSystem(E_ca, G_ca, tau_ca, Q_ca, wavelength_ca,

laser_intensity = intensity_ca)
calcium_system200MHzdetuned = las.LaserAtomSystem(E_ca, G_ca, tau_ca, Q_ca, wavelength_
-.ca,

laser_intensity = intensity_ca)
calcium_system500MHzdetuned = las.LaserAtomSystem(E_ca, G_ca, tau_ca, Q_ca, wavelength_
-.ca,

laser_intensity = intensity_ca)

2.1.2 Time Evolution of the System

Perform a timeEvolution of each system. The pretty_print_eq keyword is used here to print out the system’s
equations of motion using Sympy. There are many other keywords which can be used with timeEvolution including
averaging over the doppler profile of the atoms, averaging the Gaussian laser beam profile, and numerically printing
the equations.

I have just timed this piece of code to see how long it takes.

Note: An initial condition density matrix can be specified at t = 0 to evolve. If none is stated then all ground sub-states
are populated equally with no coherence between sub-states.

tic = time.perf_counter()
calcium_system.timeEvolution(time_ca,
pretty_print_eq = True)
calcium_system200MHzdetuned. timeEvolution(time_ca,
detuning = detuning)
calcium_system500MHzdetuned. timeEvolution(time_ca,
(continues on next page)

2.1. Tutorial 1: The Basics with Simple Calcium 5

[8]:

LASED, Release 0.3

(continued from previous page)

detuning = detuning2)
toc = time.perf_counter()
print(f"The code finished in {toc-tic:0.4f} seconds")

Populating ground states equally as the initial condition.

. . 1.0 . 1.0 1.0
p11 = 1p13€2(3,1,0) + P22 ip3192(3,1,0) + P33 | 2P
T T T
. P22
Pao = ——
-
ps = ipmQ3,1,0) - 22
. P24
Pog = ——
-
. . P32
P32 = —ip12§2(3,1,0) — —
. . . P33
P33 = _ZPISQ(?)? 170) + ZP319(3» 170> -
paa = —ip1aQ(3,1,0) — 2
. P42
Pag = ——
-
pis = ipnQ(3,1,0) - 22
. P44
Pag = ——
-
) P12 .
= P2 0(3,1,0
P12 27_ 1P32 (y Ly)

p13 = —ip11§2(3,1,0) — %f —ip3382(3,1,0)

P14 = S ip34€2(3,1,0)

2T
por = — 22 1 ipys(3,1,0)
2T
. . P31 .
P31 = ZPIIQ(37 17 O) - ? + ZP3SQ(37 170)
pin =~ 1 ip50(3,1,0)

2T

Populating ground states equally as the initial condition.
Populating ground states equally as the initial condition.
The code finished in 4.8326 seconds

2.1.3 Saving and Plotting

We can save the data to a .csv file and now plot the data generated to see the time evolution.

To save to csv use the saveToCSV("filename™) function on your LaserAtomSystem object.

calcium_system.saveToCSV("SavedData/SimpleCalciumNoDetuning.csv")
calcium_system200MHzdetuned.saveToCSV("SavedData/SimpleCalcium200MHzDetuning.csv')
calcium_system500MHzdetuned. saveToCSV("SavedData/SimpleCalcium500MHzDetuning.csv')

Now, we can plot the evolution of Calcium with no detuning, 200 MHz detuning, and 500 MHz detuning.

6 Chapter 2. Tutorials

LASED, Release 0.3

To access the density matrix elements over the time evolution use the function Rho_t(e, g) on the
LaserAtomSystem. This gives a list of the element p., for each interval in time. Elements of Rho_t() and
Rho_0()can also be accessed by addressing the labels of the states directly e.g. if a user wanted p13(¢) the would
use Rho_t (1, 3). Each element of the density matrix is complex so the real part is taken by using the abs () func-
tion.

[9]: # Using state-based indexing to get rho_33(t)
rho_33 = [abs(rho) for rho in calcium_system.Rho_t(s3, s3)]
Using label-based indexing to get rho_33(t)
rho_33_200MHzdetuned = [abs(rho) for rho in calcium_system200MHzdetuned.Rho_t(3, 3)]
rho_33_500MHzdetuned = [abs(rho) for rho in calcium_system500MHzdetuned.Rho_t(3, 3)]

fig_ca = go.Figure()
fig_ca.add_trace(go.Scatter(x = time_ca,
y = rho_33,
mode = 'lines',
name = "Rho_33 (= ® MHz)",
marker = dict(
color = 'red',
symbol = 'circle',
D))
fig_ca.add_trace(go.Scatter(x = time_ca,
y = rho_33_200MHzdetuned,
mode = 'lines',
name = "Rho_33 (= 200 MHz)",
marker = dict(
color = 'blue',
symbol = 'circle',
D))
fig_ca.add_trace(go.Scatter(x = time_ca,
y = rho_33_500MHzdetuned,
mode = 'lines',
name = "Rho_33 (= 500 MHz)",
marker = dict(
color = 'green',
symbol = 'circle',

)

fig_ca.update_layout(title = "Calcium: Time Evolution of Upper State Population with.
—Linear Excitation: I = 100 mW",

xaxis_title = "Time (ns)",
yaxis_title = "Population”,
font = dict(

size = 11))

fig_ca.write_image("SavedPlots/tutoriall-ca.png")
Image("SavedPlots/tutoriall-ca.png")

2.1. Tutorial 1: The Basics with Simple Calcium 7

LASED, Release 0.3

[9]:

Calcium: Time Evolution of Upper State Population with Linear Excitation: I = 100 m\W

—— Rho_33 (& = 0 MHz)
. W —— Rho_33 (5 = 200 MHz)
—— Rho_33 (& = 500 MHz)

0.4

Population

0.2

0 10 20 30 40 50

Time (ns)

2.1.4 Elliptical Polarisation

To excite an atomic system with ellipticaly polarised light use the relation that elliptically polarisaed light can be
composed of right-hand circular (RHC) o and left-hand circular (LHC) o~ light in varying weights. So, elliptical
light can be described as:

1
¢=—— (Lo~ + Ro™"
VL + R? ()
where R and L are weights denoting how elliptically polarised the light is in either right or left-handed direction. If
R = L then the light is just linearly polarised. The ratio of L to R determines how elliptically polarised the light is.

The Rabi frequency for elliptically polarisation follows from the expression above and is the superposition of the Rabi
frequency for RHC and LHC light with differing weights:
0 = é(LQfl — RO
VP T R

To encode this in LASED the polarisation key wordQ = [1, -1] withrabi_factors = [L, R] and rabi_scaling
= 1/np.sqrt (L*L+R*R) for normalisation. With this description of the LaserAtomSystemthe laser beam’s direction
of travel is down the quantisation axis. As an exmaple, the simple calcium system will be modelled with different
weights: one system with more a more LHC ellipse and the other with a more RHC ellipse.

For the first system, use values of L = 0.75 and R = 0.25.

8 Chapter 2. Tutorials

LASED, Release 0.3

[10]: # Declare polarisation and Rabi parameters
Q_ellipse = [1, -1]
rabi_factors_lhc = [0.75, 0.25]
rabi_scaling lhc = 1/np.sqrt(0.75%0.75+0.25%0.25)

Create laser-atom system
calcium_system_lhc = las.LaserAtomSystem(E_ca, G_ca, tau_ca, Q_ellipse, wavelength_ca,
laser_intensity = intensity_ca, rabi_scaling = rabi_
—scaling_lhc,
rabi_factors = rabi_factors_lhc)

Time eveolve system
calcium_system_lhc.timeEvolution(time_ca)

Plot all excited states
rho_e = [[abs(rho) for rho in calcium_system_lhc.Rho_t(s, s)] for s in E_ca]
fig_ca_lhc = go.Figure()
for i, rho in enumerate(rho_e):
fig_ca_lhc.add_trace(go.Scatter(x = time_ca,

y = rho,
name = f'm_F = {E_ca[i].m}",
mode = 'lines'))

fig_ca_lhc.update_layout(title = "Calcium: Time Evolution of Upper States with.,
—Elliptical Polarisation (L, R) = (0.75, 0.25)",

xaxis_title = "Time (ns)",
yaxis_title = "Population",
font = dict(

size = 11))

fig_ca_lhc.write_image("SavedPlots/tutoriall-ellipselhc.png")
Image("SavedPlots/tutoriall-ellipselhc.png")

Populating ground states equally as the initial condition.

2.1. Tutorial 1: The Basics with Simple Calcium 9

[10]:

[11]:

LASED, Release 0.3

Calcium: Time Evolution of Upper States with Elliptical Polarisation (L, R) = (0.75, 0.25)

0.8 — m_F:_j_

” = m F=0
0.7 — m_F=1
0.6

0.5

0.4

Population

0.3

0.2

GIIV\/\AN_A
0

0 10 20 30 40 50

Time (ns)

Now, model a system with a slightly more RHC elliptcal polarisation.

Rabi parameters
rabi_factors_rhc = [0.45, 0.55]
rabi_scaling_rhc 1/np.sqrt(0.45%0.45+0.55%0.55)

Create laser-atom system
calcium_system_rhc = las.LaserAtomSystem(E_ca, G_ca, tau_ca, Q_ellipse, wavelength_ca,
laser_intensity = intensity_ca, rabi_scaling = rabi_
—scaling_rhc,
rabi_factors = rabi_factors_rhc)

Time eveolve system
calcium_system_rhc.timeEvolution(time_ca)

Plot all excited states
rho_e = [[abs(rho) for rho in calcium_system_rhc.Rho_t(s, s)] for s in E_ca]
fig_ca_rhc = go.Figure()
for i, rho in enumerate(rho_e):
fig_ca_rhc.add_trace(go.Scatter(x = time_ca,

y = rho,
name = f"'m_F = {E_ca[i].m}",
mode = 'lines'))

(continues on next page)

10 Chapter 2. Tutorials

[11]:

LASED, Release 0.3

(continued from previous page)

fig_ca_rhc.update_layout(title = "Calcium: Time Evolution of Upper States with.,
—Elliptical Polarisation (L, R) = (0.45, 0.55)",

xaxis_title = "Time (ns)",
yaxis_title = "Population”,
font = dict(

size = 11))

fig_ca_rhc.write_image("SavedPlots/tutoriall-ellipserhc.png")
Image("SavedPlots/tutoriall-ellipserhc.png™)

Populating ground states equally as the initial condition.

Calcium: Time Evolution of Upper States with Elliptical Polarisation (L, R) = (0.45, 0.55)

——mF=-1
0.5 f\ — m_F=0
— mF=1

0.4

0.3

Population

0.2

0.1

Time (ns)

If L = R then this would be the same as a linear polarisation in the reference frame where the laser beam is travelling
down the quantisation axis. This is called the natural frame. To put this in the collision frame, where the polarisation
vector is along the quantisation axis, then rotations must be used.

2.1. Tutorial 1: The Basics with Simple Calcium 11

[12]:

[13]:

LASED, Release 0.3

2.1.5 Setting the Initial Conditions

There are two ways to specify the initial condition py in LASED: one way is to set the entire density matrix for the
system in one function using the object’s variable rho_0 directly and the other way is to set the initial condition for
each sub-state equally using the function setRho_0(s1,s2, value) where s1 and s2 are state objects specifying
the density matrix element which is initialised to value. In the example below calcium will be initialised with two
different conditions.

The sum of the populations of the density matrix must be equal to 1 and the coherences must be set so that pc, = pg..

calcium_system_initl = las.LaserAtomSystem(E_ca, G_ca, tau_ca, Q_ca, wavelength_ca,
laser_intensity = intensity_ca)

Set the populations of the ground state 1 and excited state 3 to 0.5 each with no.
—>coherences between them

calcium_system_initl.setRho_0(sl, s1, 0.2)

calcium_system_initl.setRho_0(s3, s3, 0.8)

Perform time evolution

calcium_system_initl.timeEvolution(time_ca)

Plot the excited population

rho_33_initl = [abs(rho) for rho in calcium_system_initl.Rho_t(s3, s3)]

Now, we are going to build a flattened density matrix rho_0 and input this straight into the system. To build the initial
density matrix we must input the density matrix elements in the correct position. To do this, use the index(e, g, n)
function to find the index which the density matrix element will sit in a flattened density matrix.

calcium_system_init2 = las.LaserAtomSystem(E_ca, G_ca, tau_ca, Q_ca, wavelength_ca,
laser_intensity = intensity_ca)

Set out the density matrix elements to be initialised
rho_11_t0 = 0.2

rho_33_t0 = 0.8

rho_13_t0 = 0.5+0.5j # These coherences can be complex!
rho_31_t® = 0.5-0.5j

Now build a flattened density matrix with these conditions

n = 4 # nunber of sub-states in the Calcium system

rho_0® = np.zeros((n*n, 1), dtype = complex) # Make an empty 2D array with only one column
rho_0[las.index(sl, sl1, n), 0] = rho_11_t®

rho_0[las.index(s3, s3, n), 0] = rho_33_t0®
rho_0[las.index(sl, s3, n), 0] = rho_13_t0®
rho_0[las.index(s3, sl1l, n), 0] = rho_31_t0

print(rho_0)

[[0.2+0.7]
[0. +0.7]
[0.5+0.55]
[0. +0.7]
[0. +0.7]
[0. +0.7]
[0. +0.7]
[0. +0.F 1]
[0.5-0.55]
[0. +0.7]
[0.8+0.7]

(continues on next page)

12 Chapter 2. Tutorials

[14]:

LASED, Release 0.3

(continued from previous page)

[0. +0.5]
[0. +0.§]
[0. +0.§]
[0. +0.5]
[0. +0.7 1]

Above is the correct form of rho_0 we want to input. We can directly input this into the LaserAtomSystem object by
using the key identifier LaserAtomSystem.rho_0

Note: be careful here as there is no safety conditions which have to be met to input this variable. Make sure that this
is the correct size and format of the flattened density matrix.

calcium_system_init2.rho_® = rho_0 # Set the variable directly

Perform time evolution
calcium_system_init2.timeEvolution(time_ca)
Plot the excited population
rho_33_init2 = [abs(rho) for rho in calcium_system_init2.Rho_t(s3, s3)]
fig_ca_init = go.Figure(go.Scatter(x = time_ca,
y = rho_33_initl,
mode = 'lines',
name = "₃₃ No Coherences at t=0",
marker = dict(
color = 'blue',
symbol = 'cross'
D))
fig_ca_init.add_trace(go.Scatter(x = time_ca,
y = rho_33_init2,
mode = 'lines',
name = "₃₃ Coherences\n at t=0",
marker = dict(
color = 'red',
symbol = 'circle'
D))
fig_ca_init.update_layout(title = f"Calcium: Time Evolution with Differnt Initial.,
—Conditions",

xaxis_title = "Time (ns)",
yaxis_title = "Population",
font = dict(

size = 11))

fig _ca_init.write_image("SavedPlots/tutoriall-ca-init.png")
Image("SavedPlots/tutoriall-ca-init.png")

2.1. Tutorial 1: The Basics with Simple Calcium 13

LASED, Release 0.3

[14]:

Calcium: Time Evolution with Differnt Initial Conditions

= 0.5 Mo Coherences at t=0
n == D3 Coherences att=0
08
0.6 r
c
2 i
E
=
[=] 0.4
w8

0.2 U

Time (ns)

2.1.6 Gaussian Laser Beam Profiles

A laser beam usually does not have a flat beam profile (known as a “top-hat” distribution) in intensity. As the beam has
spatial variation in intensity the atoms being excited experience a non-uniform time evolution. To model the effects of
the beam profile the beam can be split up into regions of approximate uniform intensity and each spatial portion of the
beam is used to time-evolve a part of the system being illuminated. Then, each part of the system is summed together
and normalised which results in the entire system being modelled.

LASED supports the modelling of a Gaussian TEM laser beam profile. The 2D standard deviation of the Gaussian must
be declared with keyword r_sigma when performing the timeEvolution() of the LaserAtomSystem. The number
of portions which the beam is split into must be chosen as well. This is declared with the keyword n_beam_averaging
when using timeEvolution(). The Gaussian averaging is applied to the time evolution of the system only if it is
declared that beam_profile_averaging = True inside the timeEvolution() function. If these are left out then
a “top-hat” distribution of laser intensity is assumed. Also, to use the Gaussian avergaing over the beam profile, the
keyword laser_power must be defined in the LaserAtomSystem. This is the total power which the laser delivers as

opposed to the intensity over a mm?2.

Below, the laser parameters are declared for this system and the simple calcium system is modelled using these param-
eters.

Note: If using this averaging the model will loop over the time evolution with the number defined in n_intensity
so the model will be much slower if a larger number is input. The larger number also results in a more accurate
representation of the beam profile. Usually, a n_intensity of around 50 is enough for most cases.

14 Chapter 2. Tutorials

[15]:

[16]:

LASED, Release 0.3

Laser parameters

laser_power = 100 # laser intensity in miW

r_sigma = 0.75 # radial distance to 2D standard deviation in mm
n_intensity = 20

calcium_system_gaussian = las.LaserAtomSystem(E_ca, G_ca, tau_ca, Q_ca, wavelength_ca,
laser_power = laser_power)
calcium_system_gaussian.timeEvolution(time_ca,
r_sigma = r_sigma,
n_beam_averaging = n_intensity,
beam_profile_averaging = True)
Plot the excited population
rho_33_gaussian = [abs(rho) for rho in calcium_system_gaussian.Rho_t(s3, s3)]

Populating ground states equally as the initial condition.

Now, we can plot the result and compare to the time evolution when excited with a “top-hat” beam profile.

fig_ca_gauss = go.Figure()
fig_ca_gauss.add_trace(go.Scatter(x = time_ca,
y = rho_33,
mode = 'lines',
name = "₃₃ Top Hat Beam Profile",
marker = dict(
color = 'red',
symbol = 'circle'
D))
fig_ca_gauss.add_trace(go.Scatter(x = time_ca,
y = rho_33_gaussian,

mode = "lines",
name = "₃₃ Gaussian Beam Profile",
marker = dict(
color = "blue",
symbol = "x"
)))
fig_ca_gauss.update_layout(title = f"Calcium: Time Evolution with Differnt Beam Profiles
xaxis_title = "Time (ns)",
yaxis_title = "Population",
font = dict(
size = 11))

fig_ca_gauss.write_image("SavedPlots/tutoriall-ca-gaussian.png")
Image("SavedPlots/tutoriall-ca-gaussian.png")

2.1. Tutorial 1: The Basics with Simple Calcium 15

[16]:

[17]:

LASED, Release 0.3

Calcium: Time Evolution with Differnt Beam Profiles

= n.; Top Hat Beam Profile
m— 0z Gaussian Beam Profile
0.8 P Pzz
0.6
c
2
k|
=
s 0.4
w8

o |

=]

10 20 30 40 50

[=]

Time (ns)

2.1.7 Doppler Detuning from the Atomic Velocity Profile

When using LASED the atoms being excited are usually defined as being stationary unless specified. If the atoms are
not stationary and have some velocity with respect to the laser beam then the frequency of the laser is detuned from
resonance due to the fixed velocity. In experiments an atomic beam is sometimes used to provide the atoms to some
interaction region where the laser-excitation takes place. If a velocity component is in (or opposite to) the direction of
the laser beam then detuning occurs. The velocity component can be specified using the atomic_velocity keyword
in the timeEvolution(). This is specified in units of m/s in the direction of the laser beam. If the direction is opposite
to this then the atomic_velocity is negative.

Detuning can also occur due to the Maxwell-Boltzmann distribution of atomic velocities. This results in a Gaussian
detuning profile. This can be modelled by splitting the detuning due to the velocity distribution of atoms into uniform
sections and time-evolving the system with these uniform detunings and then summing up the time evolution for each
detuning and normalising. The detuning due to this Doppler broadening can be modelled in LASED by defining a
doppler_width in Grad/s in timeEvolution() and a list with all the detunings to be used for the averaging process
called doppler_detunings. The more elements in doppler_detunings the more the time evolution of the system
is calculated and the more time it will take to model the system.

Model the atomic velocity introducing a Doppler shift

atomic_velocity = 50 # Velocity component of atoms in direction of laser beam in m/s
Set up the system

calcium_system_atomic_velocity = las.LaserAtomSystem(E_ca, G_ca, tau_ca, Q_ca,.
—wavelength_ca,

(continues on next page)

16 Chapter 2. Tutorials

[18]:

[19]:

LASED, Release 0.3

(continued from previous page)
laser_intensity = intensity_ca)
Perform time evolution
calcium_system_atomic_velocity.timeEvolution(time_ca, atomic_velocity = atomic_velocity)
Plot the excited state population
rho_33_atomic_velocity = [abs(rho) for rho in calcium_system_atomic_velocity.Rho_t(s3,.
—s3)]

Populating ground states equally as the initial condition.

Detuning can also occur due to the Maxwell-Boltzmann distribution of atomic velocities. This results in a Gaussian
detuning profile. This can be modelled by splitting the detuning due to the velocity distribution of atoms into uniform
sections and time-evolving the system with these uniform detunings and then summing up the time evolution for each
detuning and normalising. The detuning due to this Doppler broadening can be modelled in LASED by defining a
doppler_width in Grad/s in timeEvolution() and a list with all the detunings to be used for the averaging process
called doppler_detunings. The more elements in doppler_detunings the more the time evolution of the system
is calculated and the more time it will take to model the system. Then, use the statement doppler_averaging =
True in the timeEvolution() function.

Declare the Doppler profile parameters
doppler_width = 0.3*2*np.pi # doppler width here is 300 MHz but have to convert it into.
—Grad/s so multiply by 2*PI and scale
delta_upper = 3*doppler_width
delta_lower = -3*doppler_width
doppler_steps = 30
doppler_detunings = np.linspace(delta_lower, delta_upper, doppler_steps)
Set up the system
calcium_system_doppler = las.LaserAtomSystem(E_ca, G_ca, tau_ca, Q_ca, wavelength_ca,
laser_intensity = intensity_ca)
Perform time evolution
calcium_system_doppler.timeEvolution(time_ca,
doppler_width = doppler_width,
doppler_detunings = doppler_detunings,
doppler_averaging = True)
Plot the excited state population
rho_33_doppler = [abs(rho) for rho in calcium_system_doppler.Rho_t(s3, s3)]

Populating ground states equally as the initial condition.

Plot the results to compare.

fig_ca_doppler = go.Figure()
fig_ca_doppler.add_trace(go.Scatter(x = time_ca,
y = rho_33,
mode = 'lines',
name = "₃₃ No Doppler",
marker = dict(
color = 'red',
symbol = 'circle'
D))
fig_ca_doppler.add_trace(go.Scatter(x = time_ca,
y = rho_33_atomic_velocity,
mode = "lines",
name = "₃₃ 50 m/s Atomic Velocity",

(continues on next page)

2.1. Tutorial 1: The Basics with Simple Calcium 17

[19]:

LASED, Release 0.3

(continued from previous page)

marker = dict(
color = "blue",
symbol = "x"
)))
fig_ca_doppler.add_trace(go.Scatter(x = time_ca,
y = rho_33_doppler,
mode = "lines",
name = "₃₃ 300 MHz Doppler Profile",
marker = dict(

color = "green",
symbol = "x"
)))
fig_ca_doppler.update_layout(title = f"Calcium: Time Evolution with Doppler Detunings",
xaxis_title = "Time (ns)",
yaxis_title = "Population",
font = dict(
size = 11))

fig_ca_doppler.write_image("SavedPlots/tutoriall-ca-doppler.png")
Image("SavedPlots/tutoriall-ca-doppler.png™)

Calcium: Time Evolution with Doppler Detunings

= n3: No Doppler
0.8 = sz 50 mis Atomic Velocity
' ——— [, 300 MHz Doppler Prafile

0.6

Population

0.2

Time {ns)

18 Chapter 2. Tutorials

[20]:

[21]:

LASED, Release 0.3

2.1.8 Doppler Detuning and Gaussian Beam Profile

In LASED Doppler profile and Gaussian beam averaging can be modelled in the same system.

Note: When using both Doppler and Gaussian beam averaging the number of times the system is time evolved will be
n_intensity multiplied by the number of elements in doppler_detunings.

Set up system
calcium_system_gauss_and_dopp = las.LaserAtomSystem(E_ca, G_ca, tau_ca, Q_ca, wavelength_
—ca,
laser_power = laser_power)

Time evolve the system
calcium_system_gauss_and_dopp.timeEvolution(time_ca,

r_sigma = r_sigma,

n_beam_averaging = n_intensity,

doppler_width = doppler_width,

doppler_detunings = doppler_detunings,

doppler_averaging = True,

beam_profile_averaging = True)
Plot the excited state population
rho_33_gauss_and_dopp = [abs(rho) for rho in calcium_system_gauss_and_dopp.Rho_t(s3, s3)]

Populating ground states equally as the initial condition.

Now, plot the results.

fig_ca_gauss_and_dopp = go.Figure()
fig_ca_gauss_and_dopp.add_trace(go.Scatter(x = time_ca,
y = rho_33,
mode = 'lines',
name = "₃₃ No Doppler or Gaussian",
marker = dict(
color = 'red',
symbol = 'circle'
)))
fig_ca_gauss_and_dopp.add_trace(go.Scatter(x = time_ca,
y = rho_33_gaussian,
mode = "lines",
name = "₃₃ Gaussian Beam Profile",
marker = dict(
color = "blue",
symbol = "x"
)))
fig_ca_gauss_and_dopp.add_trace(go.Scatter(x = time_ca,
y = rho_33_gauss_and_dopp,
mode = "lines",
name = "₃₃ 300 MHz Doppler+Gaussian",
marker = dict(
color = "green",
symbol = "x"
)))
fig_ca_gauss_and_dopp.update_layout(title = f"Calcium: Time Evolution with Doppler and.
—Gaussian Averaging",
xaxis_title = "Time (ns)",
yaxis_title = "Population",
(continues on next page)

2.1. Tutorial 1: The Basics with Simple Calcium 19

[21]:

[22]:

LASED, Release 0.3

(continued from previous page)
font = dict(
size = 11))
fig_ca_gauss_and_dopp.write_image("SavedPlots/tutoriall-ca-gauss-and-dopp.png")
Image("SavedPlots/tutoriall-ca-gauss-and-dopp.png")

Calcium: Time Evolution with Doppler and Gaussian Averaging

= D,z Mo Doppler or Gaussian
0.8 q — paz Gaussian Beam Profile
' — pqz 300 MHz Doppler+Gaussian
0.6
[
i=
kT
=1
b 0.4
o

oof |

0 10 20 30 40 50

Time (ns)

2.1.9 Exporting the Equations of Motion

LASED can print the equations of motion and/or export the equations to a .tex and a .pdf file. Note, that you must have a
filename included if you want to export to a .tex file or .pdf file. Use the key idenifier pretty_print_eq_filename
in timeEvolution().

Note: You must have pdflatex installed on your system to generate a .pdf file. This is used to convert the .tex file
produced to a .pdf file. You can do this on Windows or Mac by installing MiKTeX on your system.

calcium_system_to_print = las.LaserAtomSystem(E_ca, G_ca, tau_ca, Q_ca, wavelength_ca,
laser_intensity = intensity_ca)
calcium_system_to_print.timeEvolution(time_ca,
pretty_print_eq = True,
pretty_print_eq_tex = True,
pretty_print_eq_pdf = True,
pretty_print_eq_filename = "CalciumSystemEquations')

Populating ground states equally as the initial condition.

20 Chapter 2. Tutorials

[1]:

LASED, Release 0.3

. . 1.0 . 1.0 1.0
p11 = 1p13€2(3,1,0) + tP2 ip3192(3,1,0) + ZOPs3 | LUPad
T T T
. P22
P22 = ——
-
P23 =ip21€2(3,1,0) — %
. P24
P24 = ——
-
. . P32
P32 = —ip12§2(3,1,0) — —
. . . P33
P33 = —ip13§2(3,1,0) +ip312(3,1,0) — —
p3a = —ip14§2(3,1,0) — %
. P42
Pa2 = ——
-
paz = 1p4192(3,1,0) — %
. P44
Pa4a = ——
p
P12 = e ip32§2(3,1,0)
2T

prs = —ipn€(3,1,0) — £2 — ips0(3,1,0)

pP1a = —% —ip34€2(3,1,0)
P21 = —% +ip23§2(3,1,0)

p31 = ip112(3,1,0) — 02% +1ip33(3,1,0)

pu = =1 +ip1s(3,1,0)

2.2 Tutorial 2: D to P Exciation in Helium

This tutorial demonstrates how to set up an excitation from a D state to a P state for Helium. The Helium D-state we
are considering is now not the ground state of the atom so decay can occur to lower states. The upper P-state can also
decay to other states non-radiatively which can also be modelled. In this tutorial the decay to other states is modelled.

The use of simultaneous polarisations and the normalisation of the half-Rabi frequencies is demonstrated here as well.

Also, the Wigner-D matrices are used to rotate the system to a different reference frame to show that this model is
physically consistent in all reference frames.

Start by importing the libraries we will be using.

import LASED as las

import numpy as np

from IPython.display import Image # This is to display html images in a notebook
import plotly.graph_objects as go

2.2. Tutorial 2: D to P Exciation in Helium 21

[2]:

LASED, Release 0.3

2.2.1 Decay to Other States

To set up a Laser-Atom system you must first declare the atomic states which you want to work with and label them.
We are going to set up an example system for a D-state to a P-state transistion for helium where the P-state is a high
principle quantum number Rydberg state. Therefore, we will assume that the wavelength of this fictitious transition is
the ionisation energy of helium as this is a very high lying Rydberg state. This system is only for example purposes
only and does not exist.

I’11F’1 A

/ 6) 7) 8)

_ A =827 nm
\f)

1D2 n Y
/ 1) 12) 3) [4) 5)
[b)
my = -2 -1 o +1 +2

A level diagram of the system we will model is shown above.

The LaserAtomSystem is setup in the code block below. The decay (e.g. non-radiative decay) to other states outside
the system from the excited state is characterised by the arrow from the upper states to state | f). This can be modelled
into the LaserAtomSystem using the keyword tau_f and inputting the lifetime of this decay. The decay to other states
from the lower state is shown in the diagram by the arrow from the lower state to the state |b). This can be modelled
using the keyword tau_b and inputting the lifetime of this decay.

We will excite this system with simultaneous right-hand circular and left-hand circular polarised light in the natural
frame with the laser beam travelling down the quantisation axis. This will be linearly-polarised light in the collision
frame where the transverse E-field of the laser is oscillating along the quantisation axis. Therefore, we must set Q =
[-1, 1] and set the rabi_factorsto [1, -1] as noted in Tutorial 1 and scale the Rabi frequency in the system by
using rabi_scaling. In this case set it to 1/+/2.

Then, we create the sub-states and put them into either the ground or excited states.

System parameters
laser_wavelength = 900e-9 # wavelength of transition
w_e = las.angularFreq(laser_wavelength)

Create states

one = las.State(label =1, w=0, m= -2, L =2, S =0)
two = las.State(label =2, w=0, m= -1, L =2, S = 0)
three = las.State(label = 3, w = 0, =0, L=2, S=0)
four = las.State(label =4, w=0, m =1, L =2, S = 0)
five = las.State(label =5, w=0, m =2, L =2, S =0)

six = las.State(label =6, w=w_e, m= -1, L =1, S = 0)
seven = las.State(label =7, w =w_e, m =0, L =1, S =0)
eight = las.State(label = 8, w =w.e, m =1, L =1, S = 0)

(continues on next page)

22 Chapter 2. Tutorials

[3]:

[4]:

LASED, Release 0.3

(continued from previous page)

G [one, two, three, four, five] # ground states

E = [six, seven, eight] # excited states

Q = [-1, 1] # laser radiation polarisation

rabi_scaling_he 1/np.sqrt(2)

rabi_factors_he [1, -1]

laser_intensity = 100 # miW/mm*2

tau = 60e3 # lifetime in ns (estimated)

tau_f = 1000 # non-radiative lifetime of rydberg upper state to other high-lying states.
—(ns)

tau_b = 5000 # non-radiatuve lifetime of metastable D-state (ns)

Set the simulation time for 1000 ns every 1 ns as follows:

Simulation parameters

start_time = 0

stop_time = 1000 # in ns

time_steps = 1001

time = np.linspace(start_time, stop_time, time_steps)

Create the LaserAtomSystem object. To set the initial conditions of the density matrix at t = 0 ns p(¢ = 0) we can
use the setRho_0(sl, s2, val) where sl and s2 are State objects denoting the element of the density matrix to
be set as ps1,52 and val denotes the value assigned to this element.

For this system we have set the populations of states |1), |3), and |5) as 1/3. So the density matrix elements p11 = ps3
= P55 = 1/3.

helium_system = las.LaserAtomSystem(E, G, tau, Q, laser_wavelength,

laser_intensity = laser_intensity, rabi_scaling =.
—rabi_scaling_he,

rabi_factors = rabi_factors_he)
helium_system_tauf = las.LaserAtomSystem(E, G, tau, Q, laser_wavelength,

tau_f = tau_f,

laser_intensity = laser_intensity, rabi_scaling =.
—rabi_scaling_he,

rabi_factors = rabi_factors_he)
helium_system_tauf_taub = las.LaserAtomSystem(E, G, tau, Q, laser_wavelength,

tau_f = tau_f, tau_b = tau_b,

laser_intensity = laser_intensity, rabi_scaling =.
—rabi_scaling_he,

rabi_factors = rabi_factors_he)
helium_system.setRho_0(one, one, 1/3)
helium_system.setRho_0(three, three, 1/3)
helium_system.setRho_0(five, five, 1/3)
helium_system_tauf.setRho_0(one, one, 1/3)
helium_system_tauf.setRho_0(three, three, 1/3)
helium_system_tauf.setRho_0(five, five, 1/3)
helium_system_tauf_taub.setRho_0(one, one, 1/3)
helium_system_tauf_taub.setRho_0(three, three, 1/3)
helium_system_tauf_taub.setRho_0(five, five, 1/3)

Time evolve the system.

2.2. Tutorial 2: D to P Exciation in Helium 23

LASED, Release 0.3

[5]: helium_system.timeEvolution(time)
helium_system_tauf.timeEvolution(time)
helium_system_tauf_taub.timeEvolution(time)

Now, we can plot the populations using Plotly (or any other plotting package).

[6]: rho_66 = [abs(rho) for rho in helium_system.Rho_t(six, six)]
rho_66_tauf = [abs(rho) fo